A Learning-Based Fast Uplink Grant for Massive IoT via Support Vector Machines and Long Short-Term Memory

نویسندگان

چکیده

The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving massive machine-type communication (mMTC) applications. To this end, third-generation partnership project introduced the need to use fast uplink grant (FUG) in order reduce latency increase reliability for smart Internet of Things (IoT) applications with strict Quality-of-Service constraints. We propose a novel FUG based on support vector machine (SVM). First, (MTC) devices are prioritized using an SVM classifier. Second, long short-term memory architecture is used traffic prediction correction overcome errors. Both results achieve efficient resource scheduler terms average total throughput. A coupled Markov modulated Poisson process (CMMPP) model mixed alarm regular applied compare proposed other existing techniques. In addition, extended model-based CMMPP evaluate algorithm more dense network. test scheme real-time measurement data collected Numenta anomaly benchmark (NAB) database. Our simulation show outperforms RA schemes by achieving highest throughput lowest delay 1 ms accuracy 98 % when target critical MTC limited number resources.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Massive Data Discrimination via Linear Support Vector Machines

Abst ract A linear support vector machine formulation is used to generate a fast, nitely-terminating linear-programming algorithm for discriminating between two massive sets in n-dimensional space, where the number of points can be orders of magnitude larger than n. The algorithm creates a succession of suuciently small linear programs that separate chunks of the data at a time. The key idea is...

متن کامل

Massive Data Classification via Unconstrained Support Vector Machines

A highly accurate algorithm, based on support vector machines formulated as linear programs [13, 1], is proposed here as a completely unconstrained minimization problem [15]. Combined with a chunking procedure [2] this approach, which requires nothing more complex than a linear equation solver, leads to a simple and accurate method for classifying million-point datasets. Because a 1-norm suppor...

متن کامل

Using support vector machines for long-term discharge prediction

Abstract Accurate timeand site-specific forecasts of streamflow and reservoir inflow are important in effective hydropower reservoir management and scheduling. Traditionally, autoregressive movingaverage (ARMA) models have been used in modelling water resource time series as a standard representation of stochastic time series. Recently, artificial neural network (ANN) approaches have been prove...

متن کامل

Fast Weight Long Short-term Memory

Associative memory using fast weights is a short-term memory mechanism that substantially improves the memory capacity and time scale of recurrent neural networks (RNNs). As recent studies introduced fast weights only to regular RNNs, it is unknown whether fast weight memory is beneficial to gated RNNs. In this work, we report a significant synergy between long short-term memory (LSTM) networks...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Internet of Things Journal

سال: 2022

ISSN: ['2372-2541', '2327-4662']

DOI: https://doi.org/10.1109/jiot.2021.3101978